skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Siddoway, Christine S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The stability of the West Antarctic Ice Sheet (WAIS), crucial for predicting future sea-level rise, is threatened by ocean-forced melting in the Pacific sector of the Southern Ocean. While some geological records and ice-sheet models suggest WAIS retreat during past warm periods, reliable data constraining the extent of retreat are lacking. Detrital Nd, Sr, and Pb isotope data of sediments recently drilled at International Ocean Discovery Program (IODP) Site U1532 on the Amundsen Sea continental rise manifest repeated alternations in sediment provenance during glacial–interglacial cycles of the Pliocene (5.33 to 2.58 Mya), a time warmer than present. The variations reflect large fluctuations in WAIS extent on the Antarctic continent. A unique high Pb/low εNdsignature of sediments found at the onset of glacial intervals (3.88, 3.6, and 3.33 Ma) is attributed to the supply of detritus sourced from plutonic rocks located in the West Antarctic interior. Its isotopic signature at Site U1532 indicates major inland retreat of the WAIS during the preceding interglacials. During peak interglacials, the ice margin had retreated inland, and icebergs rafted and deposited inland-sourced detritus over 500 km across the Amundsen Sea shelf. Subsequent readvance of grounded ice then “bulldozed” these inland-derived fine-grained sediments from the shelf down to the continental slope and rise, resulting in a high Pb/low εNdpeak in the rise sediments. Our continuous Pliocene records provide conclusive evidence for at least five major inland retreat events of the WAIS, highlighting the significant vulnerability of the WAIS to ongoing warming. 
    more » « less
    Free, publicly-accessible full text available December 22, 2026
  2. Sedimentary records can illuminate relationships between the climate, topography, and glaciation of West Antarctica by revealing its Cenozoic topographic and paleoenvironmental history. Eocene fluvial drainage patterns have previously been inferred using geochemical provenance data from an ~44– to 34–million year deltaic sandstone recovered from the Amundsen Sea Embayment. One interpretation holds that a low-relief, low-lying West Antarctic landscape supported a >1500-kilometer transcontinental river system. Alternatively, higher-relief topography in central West Antarctica formed a drainage divide between the Ross and Amundsen seas. Here, zircon U-Pb data from Amundsen Sea Embayment sediments are examined alongside known regional bedrock provenance signatures. These analyses suggest that all observed provenance indicators in the Eocene sandstone derive from West Antarctic rocks. This implies that a local river system flowed off a West Antarctic drainage divide, helping constrain the mid-Late Eocene evolution of West Antarctic topography with implications for the history of rifting and the characteristics of sediments infilling interior basins. 
    more » « less
    Free, publicly-accessible full text available December 10, 2026
  3. In 2019, International Ocean Discovery Program (IODP) expeditions to offshore West Antarctica recovered deep ocean sediment cores in the outer Amundsen Sea (Exp. 379) and Dove Basin (Exp. 382). These cores are characterized by numerous ice-rafted detritus (IRD) intervals, including dropstone cobbles released by icebergs calved from past glaciers/ice streams that incised the subglacial bedrock of West Antarctica. We selected nine dropstones from latest Miocene through mid-Pliocene sediment from IODP Sites U1532C, U1533B (Exp. 379) and U1536E (Exp. 382), comprising sandstone, diorite, granitoid, basalt, and rhyolite, for petrologic characterization and multi-method geo-thermochronology. Dating methods applied include U-Pb zircon (UPbZ) geochronology, and apatite fission-track (AFT) and (U-Th)/He (AHe) low-temperature thermochronology, to reveal dates and rates of geologic events with bearing on their crustal provenance and source region bedrock thermal history. Comparison to published data reveal dropstones to be of both local and distant origin. Notable discoveries are: 1) From U1536E, a ~1200 Ma [U-PbZ] diorite cobble, with ca. 130 Ma AFT and 65-50 Ma AHe ages that most resembles cratonic crust of Queen Maud Land (East Antarctica). 2) Three granitoid rocks from U1533B with ca. 174-179 Ma (UPbZ) ages. The only known rocks of similar age and lithology in West Antarctica are described in the Whitmore Mountains (WM). AFT ages of 114 Ma, 91 Ma, and 81 Ma may thus provide the first thermochronology data from the WM. 3) A 27±1 Ma (UPbZ) diorite of from U1533B records 25.6 Ma AFT and 10.6 Ma AHe ages, suggesting origins in the western Antarctic Peninsula. 4) Two very similar distinctive green quartz arenite dropstones were recovered from latest Miocene core at U1533B and U1536E, locations separated by 3270 km. Multivariate statistical comparison of their UPbZ age populations with published data indicates a common provenance in the Ellsworth Mountains (Antarctic interior). When placed within geotectonic and paleoclimate context, discoveries from IRD-dropstones promise to advance understanding of crustal and landscape evolution of evolution of glaciated continents, variations in icesheet extent during warm periods, and ocean/atmospheric current circulation. 
    more » « less
  4. The stability of the West Antarctic Ice Sheet (WAIS), crucial for preventing major future sea-level rise, is threatened by ocean-forced melting in the Pacific sector, especially in the Amundsen Sea. So far, direct evidence of the extent and rate of WAIS retreat during past warm periods has been lacking. Here, we analyzed detrital Nd, Sr, and Pb isotope data of sediments ( 18.93 for 206Pb/204Pb) and low eNd (< –5 eNd) values. This distinct isotopic signature suggests long-distance supply of detritus sourced from plutonic rocks located in the continental interior. The presence of this material at Site U1532 indicates major inland retreat of the WAIS during the immediately preceding interglacials, which allowed icebergs to transport and deposit the detritus on the Amundsen Sea shelf. Our Pliocene records reveal multiple major inland retreats of the WAIS, highlighting the extent of possible WAIS response to ongoing global warming.  
    more » « less
    Free, publicly-accessible full text available April 27, 2026
  5. Brittle faults are widespread but rarely exposed in Marie Byrd Land, a part of the West Antarctic rift system, owing to enhanced erosion of zones of cataclasis by the regional ice sheet. Tourmaline-mineralized faults discovered at three locations in the Ford Ranges constitute a new record of fluid-rock interactions in this region of extended crust. Tourmaline resists re-equilibration, even during metamorphism, thus strongly aligned tourmaline from high-angle faults at Mt. Douglass, Mt. Dolber, and Lewissohn Nunatak likely contain direct records of fault-hosted fluids and timing of fault movements. The faults form an array oriented NNW-SSE and WNW-ESE, which displays brittle kinematic criteria indicating normal-oblique and strike-oblique displacement. Mirrored fault surfaces suggest formation during seismic slip. Tourmaline is concentrated within a 2 to 4 mm zone bordering the fault planes. Petrography and EMPA analyses show unzoned tourmaline , with the dravite variety at Lewissohn Nunatak and schorl at the other two sites. Fluid inclusions in dravite are tubular (A-axis-parallel), 10 to 15 um, and up to 25 um, in length, containing gas and fluid phases. Fluid inclusions in schorl are C-axis-parallel and breached. Tourmaline ∂18O ratios (n=4) range from 9.2 to 10.4 ± 0.1 ‰ VSMOW (average 9.7‰, s.dev. = 0.7). Paired quartz yield ∂18O values of 11.1 to 10.3 ± 0.1 ‰, and ∆Qtz-Trm values between 1.3 and 2.0. Brittle microfractures in parallel arrays, evident in thin section, indicate tensile opening along ENE- WSW axes, in accordance with outcrop evidence. The strong preferred orientation and uniform mineral composition of tourmaline indicate syntectonic growth of tourmaline along fault planes. ∆Qtz-Trm values suggest equilibration between host-rock quartz and tourmaline was not achieved, likely due to rapid tourmaline precipitation. Relative isotopic homogeneity between sites suggests similar fluid conditions across the region, for crust underlying a minimum area of 2000 km2. Preliminary results of tourmaline 40Ar/39Ar dating indicate broadly Cretaceous timing for fault-related fluid flow. Ongoing work seeks to determine the temperature of mineralizing fluids and evaluate whether the brittle array localizes geothermal heat beneath the contemporary icesheet. 
    more » « less
  6. Marine sediments, obtained from cores and captures from deep sea and continental shelf sites of West Antarctica, contain rich records of latest Miocene to Present glacial and deglacial processes and conditions at the margin of the West Antarctic ice sheet (WAIS). The materials we are investigating were recovered from a) Resolution Drift on the Amundsen Sea continental rise (water depths >3900m), b)the continental shelf in the Amundsen Sea, Wrigley Gulf, and Sultzberger Bay (water depths <1000m). Resolution Drift cores were drilled by IODP Expedition 379 (Gohl et al., doi:10.14379/iodp.proc.379.2021) in sediments dominated by compacted clay and silty clay, with conglomeratic intervals of ice-rafted detritus (IRD) and downslope deposits. The shelf sediments were recovered by piston core, trigger core, and Smith McIntyre Grab (SMG) during USA research cruises of the RVIB Nathaniel B Palmer (1999, 2000, 2007) and USCGC Glacier (1983). The shelf samples are non-compacted clay, containing abundant cobbles, pebbles and biogenic fragments. Our research focuses upon rock clasts, detrital apatite and zircon, felsic volcanic tephra, and micro-manganese nodules separated from marine and glaciomarine clay. The rock clasts and detrital minerals represent samples of continental crust that we characterise according to rock type, petrology, geochemistry, and geo-thermochronology [U-Pb, (U-Th)/He, and fission track methods]. These characteristics illuminate solid Earth processes, including the development of subglacial topography . We compared clasts’ petrology and age data to the exposed onshore geology and thermochronology of bedrock, and determined that ≥90% of clasts likely originated in West Antarctica. Therefore the materials can be used to assign roughness, erodibility, and heat production factors for subglacial bedrock, which constitute boundary conditions used by ice sheet modelers. Rhyolite ash and fragments provide new evidence for explosive eruptions (dated ca. 2.55 to 2.92 Ma; feldspar 40Ar/39Ar) delivered to sea as airfall, IRD, and possible subglacial water transport. Silicic eruptions produce ash and aerosols that may screen solar energy, and provide bio-available nutrients that produce phytoplankton blooms leading to sequestration of carbon. The rhyolite dates coincide with the end of a Pliocene warm period recorded in IODP379 cores (Gille-Petzoldt et al., 10.3389/feart.2022.976703). Our work in progress seeks to obtain higher resolution geochronology in order to determine whether silicic continental volcanism occurred in response to ice unloading due to deglaciation (cf. Lin et al., 10.5194/cp-18-485-2022) and whether erupted products contributed to latest Pliocene significant cooling and WAIS re-glaciation. Another distinctive sediment constituent is micro-manganese nodules of unusual form. Whereas typical micro-MN nodules are dark, formed of concentric layers, this form is pale in color, ‘barbell’ shaped, and transparent in transmitted light. Scanning electron microscopy shows these to be microcrystalline Mn-oxide with embedded grains of quartz and feldspar, which likely served as seed material. Mn-oxides form by authigenesis at/near the seafloor surface, requiring high oxygen concentrations in the bottom water and low sedimentation rates, generally associated with the end of glacials/during interglacials (Hillenbrand et al. 2021, 10.1029/2021GL093103). Work is in progress to determine whether Mn oxides formed through passive accretion upon seed grains or microbially-mediated precipitation from Mn-oxyhydroxides or colloids, of possible relevance for coastal carbon budgets. https://doi.org/10.5194/egusphere-egu23-9728 
    more » « less
  7. Geothermal heat flow (GHF) is an elusive physical property, yet it can reveal past and present plate tectonic processes. In Antarctica, GHF has further consequences in predicting the response of ice sheets to climate change. In this Review, we discuss variations in Antarctic GHF models based on geophysical methods and draw insights into tectonics and GHF model usage for ice sheet modelling. The inferred GHF at continental scale for West Antarctica (up to 119 mW m−2, 95th percentile) points to numerous contributing influences, including non- steady state neotectonic processes. Combined influences cause especially high values in the vicinity of the Thwaites Glacier, a location critical for the accurate prediction of accelerated loss of Antarctic ice mass. The inferred variations across East Antarctica are more subtle (up to 66 mW m−2, 95th percentile), where slightly elevated values in some locations correspond to the influence of thinned lithosphere and tectonic units with concentrations of heat- producing elements. Fine- scale anomalies owing to heat- producing elements and horizontal components of heat flow are important for regional modelling. GHF maps comprising central values with these fine- scale anomalies captured within uncertainty bounds can thus enable improved ensemble- based ice sheet model predictions of Antarctic ice loss. 
    more » « less
  8. Craddock, J.P.; Malone, D.H.; Foreman, B.Z.; and Konstantinou, A. (Ed.)
    The Bighorn uplift, Wyoming, developed in the Rocky Mountain foreland during the 75–55 Ma Laramide orogeny. It is one of many crystalline-cored uplifts that resulted from low-amplitude, large-wavelength folding of Phanerozoic strata and the basement nonconformity (Great Unconformity) across Wyoming and eastward into the High Plains region, where arch-like structures exist in the subsurface. Results of broadband and passive-active seismic studies by the Bighorn EarthScope project illuminated the deeper crustal structure. The seismic data show that there is substantial Moho relief beneath the surface exposure of the basement arch, with a greater Moho depth west of the Bighorn uplift and shallower Moho depth east of the uplift. A comparable amount of Moho relief is observed for the Wind River uplift, west of the Bighorn range, from a Consortium for Continental Reflection Profiling (COCORP) profile and teleseismic receiver function analysis of EarthScope Transportable Array seismic data. The amplitude and spacing of crystalline-cored uplifts, together with geological and geophysical data, are here examined within the framework of a lithospheric folding model. Lithospheric folding is the concept of low-amplitude, large-wavelength (150–600 km) folds affecting the entire lithosphere; these folds develop in response to an end load that induces a buckling instability. The buckling instability focuses initial fold development, with faults developing subsequently as shortening progresses. Scaled physical models and numerical models that undergo layer-parallel shortening induced by end loads determine that the wavelength of major uplifts in the upper crust occurs at approximately one third the wavelength of folds in the upper mantle for strong lithospheres. This distinction arises because surface uplifts occur where there is distinct curvature upon the Moho, and the vergence of surface uplifts can be synthetic or antithetic to the Moho curvature. In the case of the Bighorn uplift, the surface uplift is antithetic to the Moho curvature, which is likely a consequence of structural inheritance and the influence of a preexisting Proterozoic suture upon the surface uplift. The lithospheric folding model accommodates most of the geological observations and geophysical data for the Bighorn uplift. An alternative model, involving a crustal detachment at the orogen scale, is inconsistent with the absence of subhorizontal seismic reflectors that would arise from a throughgoing, low-angle detachment fault and other regional constraints. We conclude that the Bighorn uplift—and possibly other Laramide arch-like structures—is best understood as a product of lithospheric folding associated with a horizontal end load imposed upon the continental margin to the west. 
    more » « less
  9. West Antarctica hosts an unusually high geothermal gradient supported by hot, low-viscosity mantle which likely enhanced the lithospheric response to West Antarctic Ice Sheet [WAIS] cycles of growth and increased the sensitivity of thermochronometers to landscape evolution. Thus a valuable record of glacial landscape change might be recovered from apatite fission track [AFT 80-130°C range] and (U-Th)/He [AHe; 50-90°C]dating, provided that landscape evolution can be distinguished from tectonic signals, including the effects of faults. This study utilizes AFT-AHe thermochronology and thermo-kinematic Pecube modeling to investigate interactions between the hot geotherm, glacial erosion, and inferred crustal structures in the Ford Ranges and the DeVicq Glacier trough in Marie Byrd Land (MBL). The Ford Ranges host glacial troughs (up to 3km relief) dissecting a low-relief erosional surface. Previous work suggests a majority of bedrock exhumation and cooling occurred at/by 80 Ma. However, new data hint at renewed exhumation linked to glacial incision since WAIS formation at 34 or 20 Ma. Prior (U-Th)/He zircon dates from exposures of crystalline bedrock span 90 – 67 Ma. New AHe bedrock dates are 41 to 26 Ma, while two glacial erratics (presumed to be eroded from walls or floor of glacial troughs) yielded AHe dates of 37 Ma and 16 Ma. The DeVicq Glacier trough (>3.5km relief) likely coincides with a regional fault but lacks temperature-time information compared to other regions. The structure may have accommodated motion between elevated central MBL and the subdued crust of the Ford Ranges. We are acquiring AHe and AFT for onshore and offshore samples to compare uplift and exhumation rates for bedrock flanking DeVicq trough. Our new Pecube models test a series of thermal, tectonic, and landscape evolution scenarios against a suite of thermochronologic data, allowing us to assess the timing of glacial incision and WAIS initiation in the FordRanges, and to seek evidence of an inferred tectonic boundary at DeVicq Trough. Modeling efforts will be aided by new AHe analyses from ongoing work. These models combine topographic, tectonic, thermal, and key thermochronologic datasets to produce new insight into the unique cryosphere-lithosphere interactions affecting landscape change in West Antarctica. 
    more » « less